

Zinpro Performance Minerals Improve Intestinal and Bone Integrity and Productive Performance in Laying Hens

ZINPRO®

Treatments

	Zinc		Manganese		Copper		Iron		Selenium		lodine
Treatment	ppm										
	ZnO	ZnAA	MnO	MnAA	CuSO ₄	CuAA	FeSO₄	FeAA	Na₂O₃Se	Zn-Se-Met	Ca(IO ₃) ₂
IMª	60	-	60	-	7	-	40		0.2	-	2.0
AACM-70 ^b		42	-	42		4.9		28	-	0.14	1.4
AACM-50°	-	30	-	30	-	3.5		20	-	0.10	1.0
AACM-40d	-	24	-	24	-	2.8	-	16	-	0.08	0.8

a IM: 60 ppm Zn, 60 ppm Mn, 7 ppm Cu, 40 ppm Fe, 0.2 ppm Se, and 2.0 ppm I, all from inorganic sources

AACM-70: 70% of IM supplementation is replaced by amino acid complexed minerals

AACM-50: 50% of IM supplementation is replaced by amino acid complexed minerals

AACM-40: 40% of IM supplementation is replaced by amino acid complexed minerals

Results

b

С

d

Replacing inorganic trace minerals with AACM resulted in higher egg production rate and higher eggshell thickness compared to the IM group, P < 0.05.

hens

Animals

20 weeks

Study Objective

Evaluate the effect of supplemental Zinpro

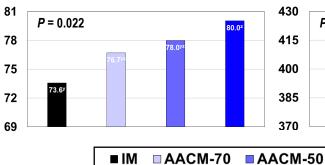
performance, and bone strength of laying

Study Duration

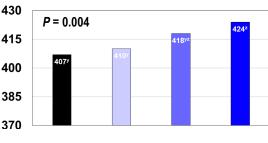
Performance Minerals (ZPM) on

intestinal histology, productive

400 White Lohmann laying hens, 78 wk old


Experimental Procedures

Completely randomized design, with 4 treatments, 10 replicates per treatment and 10 hens per replicate.


Location

Federal Rural University of Pernambuco, Caruaru, PE, Brazil

ZPM Improve Egg Production, %

ZPM Improve Eggshell Thickness, µm

■ IM ■ AACM-70 ■ AACM-50 ■ AACM-40

ROI Based on Egg Production Percentage

	IM	AACM-70	AACM-50	AACM-40
Avg Egg Production (%)	73.58	76.70	77.98	80.04
Diff to IM (eggs/100 hens)		3.12	4.40	6.46
Saleable Eggs Diff to IM - US\$		0.156	0.220	0.323
Cost Increase to Feed ZPM - US\$		0.054	0.038	0.031
ROI		2.9:1	5.7:1	10.5:1

Conclusion

Total replacement of inorganic trace minerals by reduced levels of ZPM improves production and egg quality parameters of White Lohmann laying hens with ROI improvements up to 10.5 to 1 for AACM-40 over IM.

Zinpro Performance Minerals Improve Intestinal and Bone Integrity and Productive Performance in Laying Hens

Study Objective

Evaluate the effect of supplemental Zinpro Performance Minerals (ZPM) on intestinal histology, productive

performance, and bone strength of laying hens.

Study Duration

.....

20 weeks

Animals

400 White Lohmann laying hens, 78 wk old

Experimental Procedures

Completely randomized design, with 4 treatments, 10 replicates per treatment and 10 hens per replicate.

Location

Federal Rural University of Pernambuco, Caruaru, PE, Brazil

Treatments

Treatment	Zinc		Manganese		Copper		Iron		Selenium		lodine
	ppm										
	ZnO	ZnAA	MnO	MnAA	CuSO ₄	CuAA	FeSO₄	FeAA	Na ₂ O ₃ Se	Zn-Se-Met	Ca(IO ₃) ₂
IMa	60	-	60		7		40		0.2	-	2.0
AACM-70 ^b	-	42	-	42	-	4.9		28	-	0.14	1.4
AACM-50°	-	30	-	30	-	3.5		20	-	0.10	1.0
AACM-40 ^d	-	24	-	24	-	2.8		16	-	0.08	0.8

a IM: 60 ppm Zn, 60 ppm Mn, 7 ppm Cu, 40 ppm Fe, 0.2 ppm Se, and 2.0 ppm I, all from inorganic sources

AACM-70: 70% of IM supplementation is replaced by amino acid complexed minerals

AACM-50: 50% of IM supplementation is replaced by amino acid complexed minerals

AACM-40: 40% of IM supplementation is replaced by amino acid complexed minerals

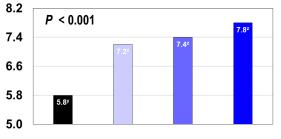
Results

b c

d

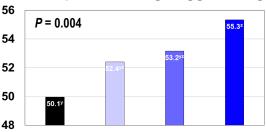
2.06

2.00

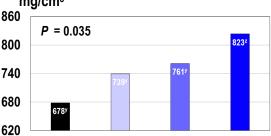

1.94

1.88

1.82


Replacing inorganic trace minerals with AACM resulted in improved villus to crypt ratio, egg mass, FCR per egg mass, and tibial densitometry compared to the IM group, P < 0.05.

ZPM Improve Villus to Crypt Ratio



ZPM Improve FCR per Egg Mass

ZPM Improve Average Egg Mass, g

ZPM Improve Tibial Densitometry, mg/cm³

■ IM □ AACM-70 ■ AACM-50 ■ AACM-40

P = 0.002

Conclusion

Total replacement of inorganic trace minerals by ZPM, even with levels 60% lower than the inorganic sources, promotes improvements in the intestinal and bone integrity, in addition to the productive parameters of White Lohmann laying hens.

